Rendering Mandelbox fractals faster
with Cone Marching

Seven/Fulcrum

This is the longer version of the presentation given at Revision 2012

Raymarching:
A quick refresh.

(for the basics: |Q's "Rendering Worlds With 2 Triangles”
http://iquilezles.org/www/material/nvscene2008/rwwitt. pdf)

Object to draw : :
J Find distance

to closest object

Another object to draw
Ray through first pixel

Camera

Step that distance
along the ray and
repeat

Continue until
you hit an object
or (if miss) reach
a maximum
distance or nr of
steps

Here the first ray
misses

The second ray
starts at the same
point (camera),
so has the same
Initial distance.

Its first sphere
overlaps 100%
with that of the
first ray.

The second sphere
overlaps a lot with
the 2nd sphere of
the 1stray. If we
could share those
between rays, the
2nd ray could start
with a large
headstart.

The 3rd sphere
has no overlap

The 2nd ray hits
an object.

The 3th ray has
the same initial
sphere again.

Because rays
are marched in
parallel on the
GPU, it's not
possible to
share the
overlapping
distances

- What is cone marching: a way to share initial distance
estimations between neighbouring pixels -> speedup!

- Split your shader in 2 parts, 1 for depth, 1 for color.

- The depth is calculates in multiple passes.

- Each pass doubles the resolution, and takes the result
of the previous pass as input.

- Instead of marching along a ray until something is hit,
the depth pass marches along the center of a cone,
until an object is close enough to intersect the cone.

- Since cones get thinner when the resolution doubles,
each pass gets progressively closer to the true depth.

Example cone march:
first depth pass: 1 cone
(= 1x1 pixel preview)

Find first distance

The size of the
sphere iIs much
larger then the
size of the cone,
so continue with
this pass.

March along the
center of the cone
and find the next
distance

The size of this
sphere is smaller
then that of the
cone, SO some
object must
Intersect the cone.

Discard the last
test, save the
distance in the
output buffer and
start a new pass.

The 2nd pass Is
2x2 pixels. Start at
the center of each
smaller cone. Get
the depth from the
previous pass.

Find the distance
for both cones.

n

o

274

The left sphere is
bigger than its
cone, so continue.
The right sphere Is
too small, so halt.

The next left step
hits an object, but
this is not the final
depth pass, so
discard the result
and halt.

The 3th pass is
4x4 pixels.

Most cones have
to halt at the first
distance test,
except for the
3th cone.

This 3th cone can
continue the 3th
pass until it is out
of range. We put
this out-of-range
distance in the
buffer.

So the 3th cone
does not need to

be subdivided any
more. This speeds
things up by
marching wide
empty spaces at
lower resolution.

4th pass: 8x8
pixels (final pass
In this low-res
example)

For the final pass
at full resolution,
do classic
raymarching. You
can skip the out-
of-range cones.

- After the final depth pass, do the color pass with the
color shader, using the buffer as input.

- In real life, the smallest resolutions are not worth the
framebuffer/shader switching overhead.

- 4 to 5 depth passes are enough, so starting with your
original resolution divided by 16 or 32.

- If your resolution is not nicely divisable by 16 or 32,
either limit the cone marching to a smaller area (with a
black border around it) or pad your depth framebuffers.

It's very important that each pass doubles the resolution
EXACTLY! Otherwise, the cones of a later pass will not
be aligned with those of the previous pass, and you will
march through the edges of objects

1st pass:

? / . 2nd pass:
3th pass: 5 pixels ->BAD!
) If the center cone starts from
. /.

the average depth of the left
and right orange cones, or
only the right cone, it will
skip the left sphere. Later
passes will also be wrong.

Speedup of finding depth (depends a lot on the scene):
- about 30% if you split the maximum nr of steps over all
depth passes. Image looks the same as raymarching.

- About 50% if you give low-resolution passes much
more steps. Low-res passes are really cheap, so don't
limit yourself there. The image now looks deeper in
wide-open parts of the scene.

- About 100% if you give low-res passes many steps,
but at the same time lower the amount of steps in the
final raymarching depth pass. Compared to classic
raymarching, the wide-open parts look deeper, but
denser areas lose precision. Depends on what
artefacts you find tolerable.

ms: 79

ms: 47

Cone marching with at most 100 steps over
4 layers: faster, loo

ms: 47

-
L[]

P o] E_'I‘:-ﬁj;fa. i

. SCEPY

it

-.,._..,
S 7= g s A
"]

-]

A0 iﬁ.

i
H B i
Cone marching

raymarch ste

g
=
B

ey BT,

Good points of cone marching:

- It works with every distance function.

- ho precalculations needed.

- each frame independent, so the distance function is
allowed to change (for animation f.e.)

- Small code size: fits in a 4k, even in OpenGL
(you need to import the FBO extensions...)

Bad points of cone marching:

- Only for primary rays (depth). Not for colors
(ambient occlusion, reflections, shadows,...)

- The early-out in empty spaces gives visible square
artifacts in iteration glow

- Many resolutions are not nicely divisible by powers of
2 (1600*1050, 1366*768), so either pad the FBOs or
use a thin black border around scene.

Cone marching and the Mandelbox fractal

- Mandelbox fractal: discovered by Tglad on
fractalforums.com . Get the distance formula there, or
from Rrrola's Boxplorer (the shader is a readable file)

- The distance formula of the mandelbox is not exact.
It's an approximation that errs on the safe side.

- That means that often, when it *seems™ the cone hits
the mandelbox, it's actually safe to continue.

- We can add a fudge factor to make the cone
thinner than it should be.

Orange = what the distance
function says. In reality, the
mandelbox may be anywhere
between the orange and green
contours. This causes a
(probably) unnecessary split.

Making the cone thinner avoids
some unnecessary splits, so it's
faster and can see deeper, but

this introduces other artifacts.

- But if the distance function *was™ accurate, we punch
square holes through edges or thin parts!

- Turns out to be only noticable with lowest passes.
(wide cones = large steps & large errors)

- Use different fudge factors for each pass, cheating
very little in the first pass and a lot in the last.
(makes the cone somewhat bullet-shaped)

- Thin details may fall
V / between the cones, this
depends a lot on how
"solid" the mandelbox is.

%‘;ﬁ;«% PS:millisecond counter | shape
Use Cone tracing: !
MNr of passes:

Max steps pass X-0O:
Cone Width Ratio: 2-0
Max steps pass X-L:

ﬂ Max steps pass X-2:
. Cone Width Ratio: X-2

e Width Rati
A | L | L5 1 !
e Width Eatio: X-i
T - !l I - I I- - 1--
. I..".|-||=| r‘\.\..lll'
! st I . I 11 Wk
i I.."-|-|||| r'k.\,.|||']
W st I . I VB2 b o |
e Width Eatio: X-0

p— L] |
=
=

—
=
=
=
=
=

!"E.
=
Gn
=
=
=

—
=
=

E!"
[
="
[
=
=

E!"
=
=
=
=
s

E!"
[
==
[
=
=

—
=
=
=
=
=

!"E.
=
GD
=
=
=

—
=
=

E!"
[
==
[
=
=

===
= =
=IR=="
= =]
= =]
= S

:-"".

Use Cone tracing; !
MNr of passes:

Max steps pass 2-0
Cone Width Rato: X-0
Max steps pass X-L:
Cone Width Ratio: 2-1
Max steps pass X-2:
Cone Width Ratio: 3-2
Max steps pass X-3:
Cone Width Rato: X-3
Max steps pass X-4:
Cone Width Ratio: 2-4
Max steps pass X-5:
Cone Width Ratie: X-5
Max steps pass X-6:
Cone Width Ratio: X-6
Max steps pass X-T:

Cone Width Ratio: X-7

Max steps pass X-5:

Cone Width Ratio: 3-8
Max steps pass X-Q:

Cone Width Ratio: -0

Use Cone tracing; !
MNr of passes:

Max steps pass 2-0
Cone Width Rato: X-0
Max steps pass X-L:
Cone Width Ratio: 2-1
{ Max steps pass X-I:
Cone Width Ratio: 3-2
Max steps pass X-3:
Cone Width Rato: X-3
Max steps pass X-4:
Cone Width Ratio: 2-4
Max steps pass X-5:
Cone Width Ratie: X-5
Max steps pass X-6:
Cone Width Ratio: X-6
Max steps pass X-T:
Cone Width Ratio: 2-7
Max steps pass X-5:
Cone Width Ratio: 28
Max steps pass X-Q:

Cone Width Ratio: -0

PrrEEEerY

st no artifacts

T

ek

’ L
- 7

radual
~ additiona

nip il
...—-"""F-

P TFM |Eme |Enlnr
Shape

MB-Scale: [2.0000000000 |
MB-Radius: [0.5000000000 |
MB-FixRad: [1.0000000000 |
|
|

Steps: |45
Tterations: | L5

MMinDistan If$!3| 0.0002000000 |
Ma..‘-:Dist:mcq:lfi_Dﬂ |

Filename: | Sier.mb |

5 003 s warning CT0LL: umpheit cast from
. |"int" to "Hoat"
005) : warning CT0LL: inplicit cast from
"int" to "Hoat"
005) : warning CT0LL: unplicit cast from
"int" to "Hoat"
005) : warning CT0LL: unplicit cast from
"int" to "Hoat"
| O(5) warning CTOLL: unplicit cast rom
~ |"int" to "Hoat"
~ |0(5) : warning CT70LL: implicit cast trom
- |"int" to "Hloat"
005) : warning CT0LL: unplicit cast from
"int" to "Hoat"
005) : warning CT0LL: unplicit cast from

- So cone marching allows you to make tradeoffs
between speed, seeing far and render artifacts.

- Thanks to the Revision organisers for allowing me to
present a shorter version of this presentation at the
Revision 2012 lightning talks.

Bonus: 4K coders, avoid the Windows 7 busy cursor with
PeekMessage(0, 0, 0, 0, PM_REMOVE)

